

Introduction

• The English dictionary word with the most consecutive vowels (six) is **EUOUAE**.

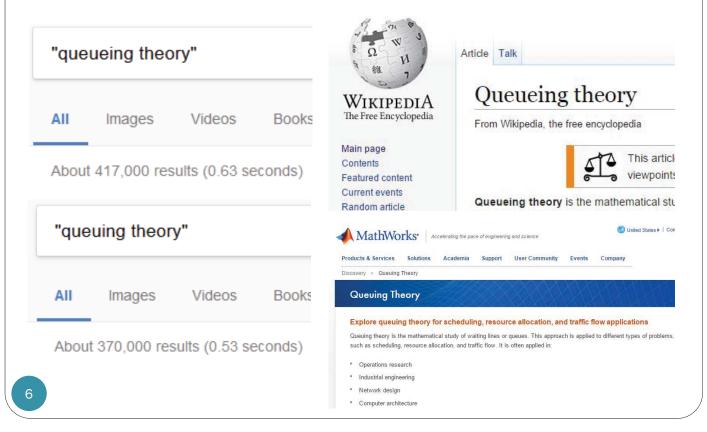
• It is also the longest English word consisting only of vowels

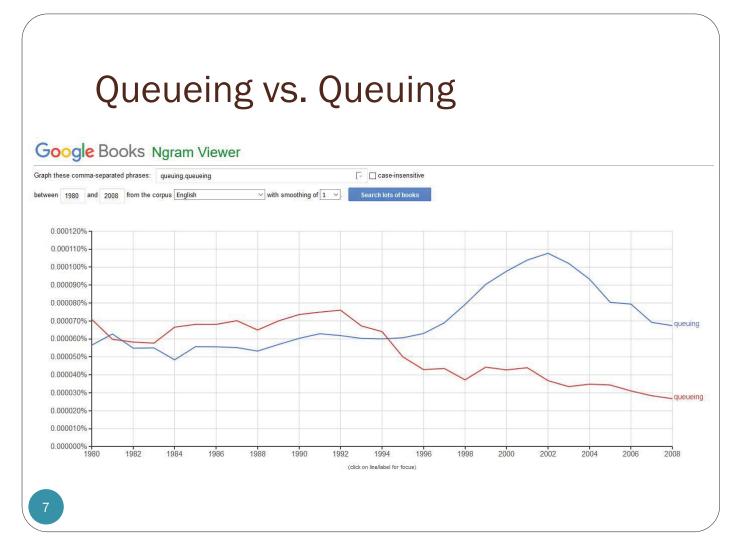
• Imagine a word with **five** consecutive vowels.

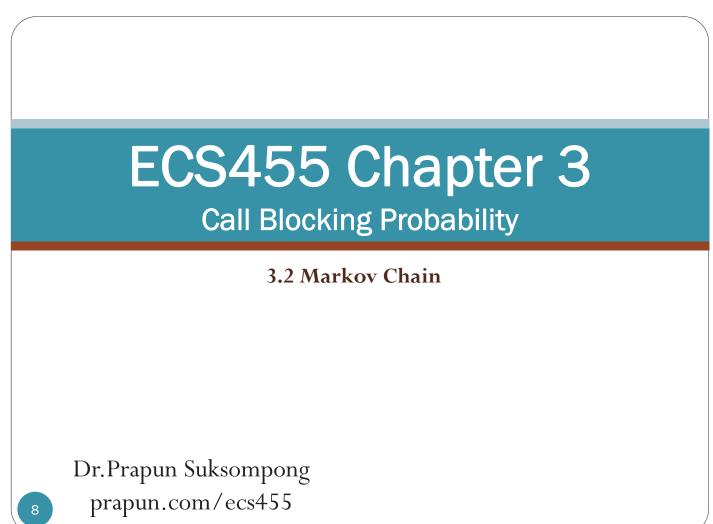
That Second "e"...

- You may recall the rule for changing a verb into its "—ing" form from your English class...
- If the verb ends in an "e" we remove the "e" and add "-ing":
 - browsing, causing, changing, charging, choosing, giving, having, hiring

Queueing vs. Queuing







Review: Discrete-Time Markov Chain

- We model the evolution in time of *K* by Markov chain.
 - K(t) = the number of channels being occupied at time t
- Time is divided into small slots so that our analysis can be done in discrete time.
 - This only approximate the solution. However, the answers will be accurate in the limit that the slot size δ approaches 0.
- Discrete-time Markov chain can be specified via its state transition diagram or its probability transition matrix P.

Simulating a Markov Chain in MATLAB

```
function X = MarkovChainGS(n,S,P,X1)
% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix
% X1 = initial state for slot 1
                 % Number of possible states
N = length(S);
                  % Preallocation
T = zeros(1,n);
T(1) = find(S==X1); % Express the states using indices from 1 to N
                    % instead of the provided support S
for k = 2:n
   T(k) = randsrc(1,1,[S;P(T(k-1),:)]);
end
                    % Express the states using the provided support
X = S(T);
end
```

Simulating a Markov Chain in MATLAB

```
n = 1e1;
                         % The number of slots to be considered
S = [1, 2];
                        % Two possible states
                                                             3/5
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2;
                        % Initial state
                                                                    B
                                                        A
                                               2/1
X = MarkovChainGS(n,S,P,X1)
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
   P_sim = [P_sim; cond_rel_freq];
end
P_sim
% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n
```

11

[MarkovChain_Demo1.m]

Example 3.10 >> MarkovChain_Demol X = 2 2 1 1 1 2 2 1 2 1 P_sim = 0.5000 0.5000 0.6000 0.4000 p_sim = 0.5000 0.5000

Exercises

X =									
2	1	2	1	2	1	2	1	1	1
P_sim =									
0.4000		0.6000							
1.0000		0							
p_sim =									
0.6000		0.4000							
>> MarkovC	hai	n_Demol							
X =									
2	2	2	2	1	2	2	2	1	1
P_sim =									
0.5000		0.5000							
0.0000		0.7143							
0.2857									

Example 3.7

```
n = 1e4;
                        % The number of slots to be considered
S = [1,2];
                        % Two possible states
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2;
                        % Initial state
                                                                   B
                                                       A
                                               21
X = MarkovChainGS(n,S,P,X1);
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
                                                  >> MarkovChain_Demo2
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
                                                  P_sim =
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
                                                       0.4007
                                                                  0.5993
    P_sim = [P_sim; cond_rel_freq];
                                                       0.5055
                                                                  0.4945
end
                                                  p_sim =
P_sim
                                                       0.4575
                                                                  0.5425
% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n
```

Example	3.4							
<pre>n = 1e4; % The number of slots to be considered S = [1,2,3]; % Three possible states P = [0 1 0; 0 2/3 1/3; 1/2 1/2 0]; % Transition probability matrix X1 = 2; % Initial state</pre>								
X = MarkovChainGS(n,S,P,X1);								
<pre>% Approximate the transition probabilities from the simulation P_sim = []; x = X(1:(n-1)); y = X(2:n); for k = 1:length(S) I = find(x==S(k)); LI = length(I); yc = y(I); cond_rel_freq = hist(yc,S)/LI; P_sim = [P_sim; cond_rel_freq]; end P_sim</pre>								
% Approximate the propo	ortions of time that							
<pre>p_sim = hist(X,S)./n</pre>		>> MarkovCha P sim =	in_Demo3					
		0 0	1.0000 0.6620 0.5142	0 0.3380 0				
		0.1093	0.6657	0.2250				

Review: Call-Blocking Probability

- **Call blocking probability** P_b is the (long-term) proportion of calls that get blocked by the system because all channels are occupied.
- For M/M/m/m system, the (long-term) call blocking probability P_b is given by p_m
 - = the steady-state probability for state m
 - = the (long-term) proportion of time
 that the system will be in state m