ECS455 Chapter 3 Call Blocking Probability

Dr.Prapun Suksompong
(1) prapun.com/ecs455

Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday 14:20-15:20
Friday $\quad 9: 15-10: 15$

Introduction

- The English dictionary word with the most consecutive ${ }^{\circ}$, vowels (six) is EUOUAE.
- It is also the longest English word consisting only of vowels

- Imagine a word with five consecutive vowels.

Introduction

－Words with five consecutive vowels include AIEEE， COOEEING，MIAOUIED，ZAOUIA，JUSSIEUEAN， ZOOEAE，ZOAEAE．

®国目向

Can＇t find any of these words in

Introduction

－Words with five consecutive vowels include AIEEE， COOEEING，MIAOUED，ZAOUIA，JUSSIEUEAN， ZOOEAE，ZOAEAE．

－Our new topic：QUEUEING THEORY． －This is the only common word in the English language with five consecutive vowels．
－Note：The longest common word without any of the five vowels is RHYTHMS．
－There are longer rare words：SYMPHYSY，NYMPHLY，GYPSYRY，GYPSYFY，and TWYNDYLLYNGS．WPPWRMWSTE and GLYCYRRHIZIN are long words with very few vowels．

That Second "e"...

- You may recall the rule for changing a verb into its "-ing" form from your English class...
- If the verb ends in an "e" we remove the "e" and add "-ing":
- browsing, causing, changing, charging, choosing, giving, having, hiring

Queueing vs. Queuing

"queueing theory"
All Images Videos Books
About 417,000 results (0.63 seconds)
All Images Videos
Abooks
About 370,000 results (0.53 seconds)

Queueing vs. Queuing

Google Books Ngram Viewer

ECS455 Chapter 3 Call Blocking Probability

3.2 Markov Chain

Dr.Prapun Suksompong

Review: Discrete-Time Markov Chain

- We model the evolution in time of K by Markov chain.
- $K(t)=$ the number of channels being occupied at time t
- Time is divided into small slots so that our analysis can be done in discrete time.
- This only approximate the solution. However, the answers will be accurate in the limit that the slot size δ approaches 0 .
- Discrete-time Markov chain can be specified via its state transition diagram or its probability transition matrix \mathbf{P}.

Simulating a Markov Chain in MATLAB

```
function X = MarkovChainGS(n,S,P,X1)
% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix
% X1 = initial state for slot 1
N = length(S); % Number of possible states
T = zeros(1,n); % Preallocation
T(1) = find(S==X1); % Express the states using indices from 1 to N
    % instead of the provided support S
for k = 2:n
    T(k) = randsrc(1,1,[S;P(T(k-1),:)]);
end
X = S(T); % Express the states using the provided support
end
```


Simulating a Markov Chain in MATLAB

```
n = 1e1; % The number of slots to be considered
S = [1,2]; % Two possible states
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2; % Initial state
X = MarkovChainGS(n,S,P,X1)
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
    P_sim = [P_sim; cond_rel_freq];
end
P_sim
% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n
```


Example 3.10

>> MarkovChain_Demo1
X =
22
1
1
1
2
2
1
2
1
0.5000
0.5000
0.6000
0.4000
$0.5000 \quad 0.5000$

P_sim =
p_sim =

Exercises

>> MarkovChain_Demo1 X =
21
2

1
2
1
2
1
1
1
P_sim =
0.4000
0.6000
1.0000

0
p_sim =
$0.6000 \quad 0.4000$
>> MarkovChain_Demo1
X =
2
2
2

2
1
2
2
2
1
1
P_sim =
0.5000
0.5000
0.2857
0.7143
p_sim =
0.3000
0.7000

Example 3.7

```
n = 1e4; % The number of slots to be considered
S = [1,2]; % Two possible states
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2; % Initial state
X = MarkovChainGS(n,S,P,X1);
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
    P_sim = [P_sim; cond_rel_freq];
end
P_sim
>> MarkovChain_Demo2
P_sim =
    0.4007
                            0.5993
p_sim =
0.4575
0.5425
\% Approximate the proportions of time that the states occur p_sim = hist(X,S)./n
```


Example 3.4

```
n = 1e4; % The number of slots to be considered
S = [1,2,3]; % Three possible states
P = [0 1 0; 0 2/3 1/3; 1/2 1/2 0]; % Transition probability matrix
X1 = 2; % Initial state
X = MarkovChainGS(n,S,P,X1);
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
    P_sim = [P_sim; cond_rel_freq];
end
P_sim
% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n
>> MarkovChain_Demo3 P_sim =
\begin{tabular}{rrr}
0 & 1.0000 & 0 \\
0 & 0.6620 & 0.3380 \\
58 & 0.5142 & 0
\end{tabular}
0.4858
0.5142

\section*{Review: Call-Blocking Probability}
- Call blocking probability \(\mathbf{P}_{\mathbf{b}}\) is the (long-term) proportion of calls that get blocked by the system because all channels are occupied.
- For \(M / M / m / m\) system, the (long-term) call blocking probability \(\mathrm{P}_{\mathrm{b}}\) is given by \(p_{\mathrm{m}}\)
\(=\) the steady-state probability for state \(m\)
\(=\) the (long-term) proportion of time that the system will be in state \(m\)```

